Chronic opioid treatment induces adenylyl cyclase V superactivation. Involvement of Gbetagamma.

نویسندگان

  • T Avidor-Reiss
  • I Nevo
  • R Levy
  • T Pfeuffer
  • Z Vogel
چکیده

It has been known for some time that chronic treatment of neuronal cells and tissues with opioids, contrary to their acute effect, leads to an increase in cAMP accumulation. This phenomenon, defined as adenylyl cyclase superactivation, has been implicated in opiate addiction, yet the mechanism by which it is induced remains unclear. Here, we show that this phenomenon can be reproduced and studied in COS-7 cells cotransfected with adenylyl cyclase type V and mu-opioid receptor cDNAs. These cells display acute opioid inhibition of adenylyl cyclase activity, whereas prolonged exposure to the mu-agonist morphine or [-Ala2, N-methyl-Phe4, Gly-ol5]enkephalin leads to a time-dependent superactivation of adenylyl cyclase. This superactivated state is reversible, because it is gradually lost following agonist withdrawal. Adenylyl cyclase superactivation can be prevented by pertussis toxin pretreatment, indicating the involvement of Gi/o proteins, or by cotransfection with the carboxyl terminus of beta-adrenergic receptor kinase or with alpha-transducin (scavengers of Gbetagamma dimers), indicating a role for the G protein betagamma dimers in adenylyl cyclase superactivation. However, contrary to several other Gbetagamma-dependent signal transduction mechanisms (e.g. the extracellular signal-regulated kinase 2/MAP kinase pathway), adenylyl cyclase superactivation is not affected by the Ras dominant negative mutant N17-Ras.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Opiate-induced adenylyl cyclase superactivation is isozyme-specific.

While acute activation of inhibitory Gi/o-coupled receptors leads to inhibition of adenylyl cyclase, chronic activation of such receptors leads to an increase in cAMP accumulation. This phenomenon, observed in many cell types, has been referred to as adenylyl cyclase superactivation. At this stage, the mechanism leading to adenylyl cyclase superactivation and the nature of the isozyme(s) respon...

متن کامل

Adenylyl cyclase superactivation induced by long-term treatment with opioid agonist is dependent on receptor localized within lipid rafts and is independent of receptor internalization.

Long-term opioid agonist treatment results in adenylyl cyclase superactivation. A recent "RAVE" theory implicates a direct correlation between the ability of agonist to induce receptor internalization and the magnitude of adenylyl cyclase superactivation. We decided to test such a theory by examining the adenylyl cyclase superactivation after long-term activation of mu-opioid receptor (MOR) in ...

متن کامل

Differential superactivation of adenylyl cyclase isozymes after chronic activation of the CB(1) cannabinoid receptor.

Many types of cells exhibit increased adenylyl cyclase (AC) activity after chronic agonist treatment of G(i/o)-coupled receptors. This phenomenon, defined as AC superactivation or sensitization, has mostly been studied for the opioid receptors and is implicated in opiate addiction. Here we show that this phenomenon is also observed on chronic activation of the CB(1) cannabinoid receptor. Moreov...

متن کامل

Regulation of adenylyl cyclase isozymes on acute and chronic activation of inhibitory receptors.

Adenylyl cyclase superactivation, a phenomenon by which chronic activation of inhibitory Gi/o-coupled receptors leads to an increase in cAMP accumulation, is believed to play an important role as a compensatory response of the cAMP signaling system in the cell. However, to date, the mechanism by which adenylyl cyclase activity is regulated by chronic exposure to inhibitory agonists and the natu...

متن کامل

Chronic opioid agonist-induced adenylyl cyclase superactivation is dependent on receptor localized within lipid rafts and is independent on receptor internalization

1 Chronic opioid agonist-induced adenylyl cyclase superactivation is dependent on receptor localized within lipid rafts and is independent on receptor internalization.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 271 35  شماره 

صفحات  -

تاریخ انتشار 1996